四川久远环保装备有限公司 Sichuan Jiuyuan Energy Saving Environment-Protection Equipment Co.,Ltd.
公司概况
在线客服
 工作时间
周一至周五 :8:30-17:30
 联系方式
联系电话:0816-6330580

2020智能制造行业发展现状及发展前景趋势分析


2020智能制造行业发展现状及发展前景趋势分析

一、智能制造行业现状及趋势

    近年来,中国的经济发展已由高速增长阶段逐步转入高质量发展阶段,政府更加关注于优化经济结构、转换增长动力。制造业是供给侧结构性改革的主要领域,尽管制造业增加值在全国GDP总量中的比重呈下降态势,但以制造业为代表的实体经济才是中国经济高质量发展的核心支撑力量。2015-2016年,中国制造业增加值的同比增速仅为3.5%和5.9%,原料、土地、人力资源等生产要素成本的不断上涨使制造业本就不高的利润率很难提升。提高质量效益、转变生产方式是中国制造业必须要解决的问题,而发展智能制造正是中国制造由大到强的必由之路。

    智能制造是一种可以让企业在研发、生产、管理、服务等方面变得更加“聪明”的生产方法,制造业企业要从自身发展的核心痛点出发,在合理的整体规划和顶层设计基础上,沿着智能制造要素→智能制造能力→智能制造系统的发展方向,分阶段且持续性的获取智能制造要素,建立、完善、扩展企业在研发设计、生产制造、物流仓储、订单获取、产品服务等各个环节的智能制造能力,最终形成完整、高效、科学的智能制造系统。

    目前中国智能制造仍面临关键装备与核心零部件受制于人、中小企业难以融入智能制造浪潮、大部分企业缺少智能制造的文化内核等重大挑战,制造业企业要顺应趋势,提前规划,明确目标,关注网络协同制造、5G等新模式、新技术带来的新机遇,以“立足当前,着眼长远”的原则,分阶段、持续性地实施智能化转型。

    最新中研产业研究院的研究报告《2020-2025年中国智能制造行业深度发展研究与“十四五”企业投资战略规划报告》数据显示

    目前美国、德国、日本等工业发达国家在数控机床、测控仪表和自动化设备、工业机器人等方面具有多年的技术积累,优势明显,特别是高端装备差距尤为突出。如仪器仪表行业的功能安全技术和安全仪表系统、无线传感器网络和无线仪表、生物集成微流路片等前瞻性技术和高端产品,国外公司已经有产品投入市场,而国内企业因缺少技术储备,技术水平与国外的差距很大。一旦这些新技术和新产品在市场上推广应用,有可能出现新一轮国外产品垄断市场的潜在危险。因此,我国进入智能制造装备领域将面临激烈的国际市场竞争。

    同时,后金融危机时代,美国、英国等发达国家重新回归重视发展高技术的制造业,德国、日本竭力保持在智能制造装备领域的优势和垄断地位,韩国也力求跻身世界制造强国之列,这更加挤压了我国智能制造装备产业的发展空间。

    为了提高产品利润率和增强产业话语权,中国企业正在努力从附加值低的产品与服务向附加值高的产品与服务、从产业链低端向产业链高端升级。从低端向高端升级,既可以是产品与服务升级,也可以是产业链升级。无论是产品与服务还是产业链的升级,对于帮助企业由大转强都非常重要。产品服务升级首先是提升产品服务利润率,同时也是开拓新市场机会的重要途径。而产业链升级,指企业经营从产业链低端的制造向高端的研发设计、销售物流升级(即所谓的产业链"微笑曲线"的两端),从而增强企业在产业链中的地位和话语权,提高企业抗风险能力,更是中国企业突破危机,长远发展的关键战略举措。

    工业机器人可以为企业提供稳定、可靠、廉价的智力和体力服务,只要价格低于同等水平的劳动力,几乎所有的企业都不会拒绝使用机器人。目前看来,机器人在智能制造这个应用领域上,前景几乎无限广阔。近年来,在行业形势及国家政策推动下,我国智能制造产业发展迅速,产值规模已经达到15000亿元。当前,世界经济进入下行趋势,各国对于制造业发展愈发重视,纷纷加快推动技术创新,促进制造业转型升级,智能制造战略由此不断升温。目前,因此,智能化、绿色化已成为制造业发展的主流方向,智能制造也将成为世界各国竞争的焦点。

二、工业机器人行业市场规模

    随着我国工信部装备工业司《关于推进工业机器人产业发展的指导意见》将从产业研发方面推进和突破关键零部件的核心技术,整合现有资源,形成一批产业机器人的实验室、技术中心;积极推动汽车、电子、军工、物流、医药、危险品制造等行业工业机器人的应用示范,配套相关行业的发展;根据区域特色,引导行业有序发展,制定行业准入标准。

图表:2016-2018年工业机器人销售规模


   数据来源:中研普华

    智能制造是一种可以让企业在研发、生产、管理、服务等方面变得更加“聪明”的方法,我们可以把制造智能化理解为企业在引入数控机床、机器人等生产设备并实现生产自动化的基础上,再搭建一套精密的“神经系统”。智能“神经系统”以ERP(企业资源计划系统)、MES(生产过程执行系统)等管理软件组成中枢神经,以传感器、嵌入式芯片、RFID标签、条码等组件为神经元,以PLC(可编程逻辑控制器)为链接控制神经元的突触,以现场总线、工业以太网、NB-IoT等通信技术为神经纤维。企业能够借助完善的“神经系统”感知环境、获取信息、传递指令,以此实现科学决策、智能设计、合理排产,提升设备使用率,监控设备状态,指导设备运行,让自动化生产设备如臂使指。

    制造业企业智能化不存在“放之四海而皆准”的普适路径。制造业企业实现智能化要从自身的核心痛点出发,在合理且有延续性的整体规划与顶层设计的基础上,沿着智能制造要素→智能制造能力→智能制造系统的发展方向,分阶段且持续性的获取智能制造要素,建立、完善、扩展企业在研发设计、生产制造、物流仓储、订单获取、产品服务等各个环节的“智造能力”,最终形成完整、高效、科学的智能制造系统。

    对制造业企业生产活动中各个环节的六种典型智能制造能力从预期收益、实施难度、成本下降、资金投入、时间跨度五个维度进行分析评价,并以此为基础提出智能化路径示例。

    数字化设计是智能制造系统的源头,是企业实现数字化、智能化道路上必须要突破的关键点。制造业中的设计包括产品设计、工艺设计、工艺优化、样品制造、检测检验等一系列过程。传统的研发设计流程是以模块分立形式,按照顺序完成开发,产品开发周期长且质量得不到保证。而数字化设计借助计算机辅助设计软件(CAX)、三维设计与建模工具等技术能够赋予企业将研发过程全面数字化、模型化,实现研发设计流程的高度集成、协同与融合,大幅缩短产品开发周期,降低开发风险和开发费用。

    目前CAX类软件在国内制造业企业中已有一定程度应用基础,但从发展趋势及与智能制造系统的契合程度来看,第三代产品设计语言MBD(基于模型的设计)技术将成为数字化设计的主武器,MBD的应用将打通数字化设计与数字化制造,使三维模型成为制造的唯一数据源,让产品模型在整个生命周期得到充分利用。

    销售是所有企业的核心业务之一,智能制造系统中的销售智能化除了应用CRM等软件管理销售业务外,更为重要的是在订单获取层面发挥作用。在当前个性化需求日益旺盛的环境下,企业通过建立定制平台,能够将用户提前引入到产品的设计、生产过程中,通过差异化的定制参数、柔性化的生产,使个性化需求得到快速实现,以此提升品牌价值,增加用户粘性。与之相匹配的,企业应将定制平台与智能制造系统中的研发设计、计划排产、制造执行等模块实现协同与集成,实现从线上用户定制方案,到线下柔性化生产的全定制过程;在企业后台建立个性化产品数据库,应用大数据技术对用户的个性化需求特征进行挖掘和分析,并反馈到研发设计部门,优化产品及工艺,基于用户需求新趋势开展研发活动。

    智能制造视角下的产品服务是借助云服务、数据挖掘和智能分析等技术,捕捉、分析产品信息,更加主动、精准、高效的给用户提供服务,推动企业价值链向后延伸。远程运维服务即是典型的制造企业智能化服务模式,企业利用物联网、云计算、大数据等技术对生产并已投入使用的智能产品的设备状态、作业操作、环境情况等维度的数据进行采集、筛选、分析、储存和管理,基于上述数据的分析结果为用户提供产品的日常运行维护、预测性维护、故障预警、诊断与修复、运行优化、远程升级等服务。

    远程运维服务可以有效降低设备故障率,提升设备使用率与使用寿命,既能减轻制造商的负担,又能显著提升产品价值。远程运维对于企业产品的智能化程度要求较高,产品必须配备开放的数据接口,具备数据采集、通信模块;企业还需建立远程运维服务前端平台与后端数据中心,采集产品数据并基于大数据分析与计算,向用户提供增值服务。

    智能制造系统的整体规划与顶层设计是制造业企业正式踏上智能化道路的第一步,企业在这一环节要为“我是谁、我在哪、我要干什么”三大问题寻找答案:首先要明确“我是谁”,详细扫描企业自身的核心竞争力、运营情况、财务状况、人员配备、组织架构等基础条件;而后通过智能制造能力成熟度模型等工具进行智能程度自评与诊断,了解企业缺失的智能制造要素、已具备和尚未具备的智能制造能力,精准定位企业目前所处的智能化阶段,搞清楚“我在哪”;在回答了前两个问题的基础上,以企业发展的核心痛点为切入点,以获取关键“智造能力”为阶段性目标,以搭建完整、高效、科学的智能制造系统为发展方向,按照统一架构和统一标准规划设计智能制造系统总体实施方案及核心要素能力解决方案,确保企业在智能化之路上知道“我要干什么”。

三、中国智能制造发展历程

图表:中国智能制造行业发展历程

   数据来源:中研普华研究院

    智能制造发展需经历自动化、信息化、互联化、智能化四个阶段。我国目前仍处于“工业2.0”(自动化)的后期阶段,“工业3.0”(信息化)还待普及,“工业4.0”正在尝试尽可能做一些示范,制造的自动化和信息化正在逐步布局。

、我国智能制造未来趋势

1.关键装备、核心零部件受制于人,短期内难以实现国产替代

    我国近90%的芯片、70%的工业机器人、80%的高档数控机床和80%以上的核心工业软件依赖进口。这造成国内制造业企业智能化改造成本居高不下,严重制约我国智能制造的整体进展。以工业机器人为例,中国已经连续六年成为工业机器人第一消费大国,2017年中国工业机器人销量达到了13.8万台,全球占比达到36%。而其中仅有3.5万台是由国内工业机器人制造商生产,国产率仅为25.2%,比2016年的31%还下降了近6个百分点。由此可见,中国制造业企业在提升自动化水平时优先选取的是选购国外品牌的工业机器人,国产机器人尽管发展较快,但短时间内难以满足智能制造的需求。

2.小微企业难以融入智能化发展浪潮

    在全国规模以上工业企业中,84.2%的企业属于小型企业,规模以下(年主营业务收入2000万元以下)尚有200余万家小微企业。广大小微企业是制造业的根基,其智能化水平很大程度上影响着中国智能制造工程的实施效果。然而从《中国制造2025》战略提出以来,由于自有资金不足、信息化基础薄弱、缺乏相关人才等多方面因素的影响,大部分中国制造业小微企业只能羡慕大企业申请智能制造试点示范项目、围观大企业开展轰轰烈烈的智能化改造,自己却难以融入智能制造的发展浪潮。相比于大中型企业,小微企业的智能化之路面临更大的试错成本和不可控风险,稍有不慎就会危及生存。

3.流程领域有望率先实现智能化

    智能制造系统是一个覆盖设计、物流、仓储、生产、检测等生产全过程的极其复杂的巨系统,企业要搭建一个完整的智能制造系统,最困难也是最核心的部分就是生产过程数字化。尤其是对于生产工艺复杂、原材料及原器件种类繁多的离散制造领域,产品往往由多个零部件经过一系列不连续的工序装配而成,其过程包含很多变化和不确定因素,在一定程度上增加了离散型制造生产组织的难度和配套复杂性,要做到生产全程数字化、可视化、透明化殊为不易。   

    与离散领域显著不同的是,流程领域的生产流程本质上是连续的,被加工处理的工质不论是产生物理变化还是化学变化,其过程不会中断,而且往往是处于密闭的管道或容器中,生产工艺相对简单,生产流程清晰连贯,生产全过程数字化难度相对较低。流程领域企业接下来要做的是在全面贯通整合各阶段数据的基础上,运用人工智能的深度学习、强化学习(主要是动态规划方法)进行实时数据分析和实时决策,并进一步将智能系统延伸至供应链、生产后服务等各个环节,最终实现全面智能化。

4.供应链协同倒逼产业链上游企业“上马”智能制造

    制造业企业智能化的动力本源是响应市场需求,这点在消费品制造领域尤为明显,乘用车、家电、3C、服装、医药、食品等直接面向消费者的制造业企业搭建智能制造系统的主要目的即是实现高度柔性生产,快速、准确地实现消费者对产品的个性化、定制化需求。如果我们把视角向上推,对于原材料工业和装备工业的企业而言,智能化浪潮前沿的消费品制造厂商即是他们的市场所在,要跟上客户多品种、小批量的生产节奏,就必然要大幅提升自身的产品创新能力、快速交货能力以及连续补货能力。快速变化的市场需求从消费端沿着产业链不断向上传导,下游企业生产方式的颠覆与创新迫使上游供应商融入智能化浪潮,智能制造倒逼机制就此形成。在这种倒逼机制的作用下,产业链上游企业要主动适应变化,实现柔性生产,基于供应商先期介入思维,通过网络协同制造确立竞争优势,否则将面临被市场淘汰的风险。

    智能制造属于资金密集型行业,而广大中小企业普遍面临着融资难问题,资金已经成为制约中小型智能制造企业发展的一个重要因素,来自中央和地方政府的大规模产业和科研基金投入,将为智能制造产业提供强大的动力和资源,解决智能制造企业孵化、发展、扩大规模的资金需求及资源引进、配置问题。

    随着“中国制造2025”的出台,我国制造业正式踏上了以智能制造为重要发展方向的转型升级之路。